ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ: ДВОИЧНАЯ СИСТЕМА - significado y definición. Qué es ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ: ДВОИЧНАЯ СИСТЕМА
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ: ДВОИЧНАЯ СИСТЕМА - definición

СИМВОЛИЧЕСКИЙ МЕТОД ЗАПИСИ ЧИСЕЛ
Системы счисления; Смешанная система счисления; Непозиционные системы счисления; Системы счисления разных народов; Счисление; Нумерация (запись чисел); Факториальная система счисления

ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ: ДВОИЧНАЯ СИСТЕМА      
К статье ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ
В последние годы в области прикладной математики, особенно в компьютерах, очень важное значение приобрела двоичная система счисления.
В то время как система счисления с основанием 10 требует десяти цифр (включая нуль), для двоичной арифметики необходимо всего два символа - 0 и 1.
В двоичной системе число 6789 записывается в виде 1101010000101, т.е. как
Переход от десятичной записи к двоичной осуществляется легко: десятичное число делится на два, затем на два делится частное, затем - новое частное и так до тех пор, пока не будет получено последнее частное (равное 1), причем каждый раз записывается остаток от деления. Выписав последнее частное (1) и вслед за ним в обратном порядке все остатки от деления исходного числа на два, мы получим двоичный эквивалент исходного числа. Чтобы записать двоичное число в десятичной системе, необходимо обратить процедуру: умножить первую цифру слева на 2, к полученному результату прибавить вторую цифру слева, полученную сумму прибавить к третьей цифре слева и т.д. до тех пор, пока мы не прибавим последнюю (самую правую) цифру двоичного числа.
Двоичной системой счисления пользовался в начале 17 в. Т.Харриот. Позднее Г.Лейбниц обратил на двоичную систему внимание миссионеров, отправлявшихся для проповеди христианства в Китай в надежде убедить китайского императора в том, что Бог (единица) сотворил все из ничего (нуля). Однако вплоть до 20 в. двоичную систему рассматривали как своего рода математический курьез, и время от времени раздавались предложения перейти от десятичной системы к восьмеричной или двенадцатиричной, но отнюдь не двоичной системе.
Однако именно в двоичной системе арифметические операции особенно просты. В двоичной системе не существует "таблицы сложения", которую нужно бы было запоминать, так как "перенос в старший разряд" начинается с 1 + 1 = 10. При сложении больших чисел необходимо лишь складывать по столбцам или разрядам, как в десятичной системе, памятуя лишь о том, что как только сумма в столбце достигает числа 2, двойка переносится в следующий столбец (влево) в виде единицы старшего разряда. Вычитание производится так же, как в десятичной системе, не задумываясь о том, что теперь в случае необходимости нужно "занимать" из столбца слева 2, а не 10.
В двоичной таблице умножения единственный результат, отличный от нуля, соответствует 1?1 = 1. Каких-нибудь других "табличных" произведений, требующих запоминания, не существует, так как любое целое число больше единицы в двоичной системе по крайней мере "двузначно". Умножение "столбиком" выполняется без труда, так как необходимость в "переносе в старший разряд" отпадает, за исключением сложения частичных произведений при получении окончательного ответа. Однако за эту легкость приходится "платить" большим числом знаков при умножении даже небольших чисел.
Деление "углом" в двоичной системе выполняется быстро, при этом нет необходимости в пробных делителях. По существу, деление становится своего рода непрерывным вычитанием, которое отличается необычайной "прозрачностью".
В компьютерах двоичная система особенно удобна тем, что двоичные цифры соответствуют тому, что электронная система может находиться лишь в одном из двух состояний - либо "выключено" (цепь разомкнута, двоичная цифра 0), либо "включено" (цепь замкнута, двоичная цифра 1). Числа, записанные в двоичной системе, требуют большего числа знаков, чем их аналоги в десятичной системе, но при проектировании компьютеров, предназначенных для работы с числами, не превышающими 10 миллионов, оказалось, что легче оперировать с 24-разрядными двоичными числами (т.е. 24 реле или переключателя типа "вкл." - "выкл."), чем с семизначными десятичными числами (реле или переключателями, которые могут находиться в 10 состояниях). И в двоичной, и в десятичной системе суть состоит в позиционном принципе записи чисел, поэтому ясно, что современные суперкомпьютеры стали возможны благодаря тому, что четыре тысячи лет назад в Месопотамии было совершено важнейшее открытие в области обозначения чисел.
Позиционная система         
Позиционная система; Позиционные системы счисления; Основание системы счисления; Позиционная нотация

система счисления (См. Счисление), основанная на принципе позиционного, или поместного, значения цифр, т. е. на том, что одна и та же цифра получает различные числовые значения, в зависимости от её места в записи чисел. К П. с. принадлежит общепринятая ныне десятичная нумерация с помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (см. Десятичная система счисления).

ПОЗИЦИОННАЯ СИСТЕМА         
Позиционная система; Позиционные системы счисления; Основание системы счисления; Позиционная нотация
система счисления, основана на принципе позиционного, или поместного, значения цифр, т. е. на том, что одна и та же цифра получает различные числовые значения в зависимости от ее места в записи чисел. К позиционным системам принадлежит общепринятая ныне десятичная система счисления; в ней, напр., 222 = 200 + 20 + 2.

Wikipedia

Система счисления

Систе́ма счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на:

  • позиционные (англ. positional system, place-value notation);
  • непозиционные;
  • смешанные.
¿Qué es ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ: ДВОИЧНАЯ СИСТЕМА? - significado y definición